Software Production Methodology Testbed
Project

R. C. Tausworthe
DSN Data Systems Development Section

This article reports the history and results of a 3-1/2-year study in software
development methodology. The findings of this study have become the basis for
DSN software development guidelines and standard practices. The article
discusses accomplishments, discoveries, problems, recommendations and future

directions.

|. Introduction

Since November 1972, the DSN has been engaged in
the development of a software production methodology, a
set of Standard Practices which implement this methodol-
ogy, and a set of languages and aids for software
implementation, which together form the DSN Program-
ming System. The software methodology development was
principally an empirical bootstrapping from emerging
theories in software production through a testbed
implementation project into a viable modern software
engineering discipline.

The testbed project was the complete redesign of an
MBASIC language processor (Ref. 1) under controlled
conditions which could be altered to observe effects.
Design and management methods which produced favor-
able effects were recorded for future projects in the form
of a two-volume “software methodology textbook” (Ref.
2). At this writing, both the testbed project and the
textbook Volume I, exposing the methods used to effect

96

the completion of the testbed, are complete. This article
discloses the key final project guidelines, the key design
concepts, the machine-independent design philosophy, the
testbed methodology accomplishments and discoveries,
the testbed project statistics (including team productivity),
some problems not solved during this testbed activity,
some recommendations for future projects, and some
future needs indicated by the testbed project.

Il. History

In November 1972, the Telecommunications Division
and the Tracking and Data Acquisition Planning Office
formed a joint team to establish a viable advanced
engineering activity in development and application of a
standard DSN language and the development and
promulgation of engineering and technical management
standards for the implementation of software for opera-
tional use in DSN facility subsystems and in DSN

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

technical management and administration. Later that
month, this team initiated the machine-independent
design of an MBASIC language processor, to be designed
and documented by National Information Systems, Inc.
(NIS), of Los Altos, California, to JPL standards with
respect to design methodology, documentation format,
level of detail, quality, and management.

A prototype version of the MBASIC processor had, at
that time, just become operational (Fig. 1) on the Univac
1108 in the General-Purpose Computing Facility, having
been implemented by International Computer Equip-
ment, Inc., private consultants, and NIS. This prototype
was not suitable for transfer to other host systems, was not
documented to an effective level, and was probably not
extendable to the intended full MBASIC language without
an almost complete rewrite. Structured programming and
other forms of modern software engineering, in their
infancy, had not been used.

The MBASIC machine-independent design (MID) was
therefore originally commissioned to fulfill the following
work statement (October 1972):

(1) The design would be machine-independent down to
a set of subroutines whose design would be machine-
dependent.

(2) The level of design detail would extend only to that
degree sufficient to permit determination of trade-

offs for programming in assembly language on 16-
and 32-bit hosts.

(3) Decision tables would be used to the maximum
extent.

(4) Data structures and module interfaces would be
specified in detail.

(5) Top-down, hierarchic, structured design principles
would be applied, and documentation of the design
down to five levels, plus a narrative overview, would
be delivered.

Subsequent to this statement of work were several
redirections of effort, the most significant of which was the
transformation of the MID effort into a modern software
engineering methodology testbed project, and this single
redirection was the basis for all other redirections. By
means of such a testbed on a software development of
significant size, it was possible to formulate, implement,
observe, and tune software design, documentation, coding,
testing, and technical management methodologies to
observe their effects in a clinical way.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

The methodology instructions began in November 1972
as a set of memoranda sent to NIS; by January 1973,
enough of these had been issued that, at the request of the
Tracking and Data Acquisition Office, they were compiled
into a “standards methodology working paper.” This
working paper was augmented and revised continually as
the development guidelines evolved, and always kept
current. It was distributed at several junctures in draft
form.

In order for others to be able to use the working paper
and to apply the methodologies in their own projects, it
was found necessary to add tutorial material to the
working paper. By June 1975, the paper had taken on the
appearance of a methodology textbook, had gone through
seven drafts, each including more and more tutorial detail,
and had split into two volumes, methods and standards.
The first volume is currently being typeset, and the second
volume is drafted through most of its textual chapters and
a few of its appendices.

The textbook drafts enjoyed a wide exposure to the
programming community, both at JPL and outside, being
used as texts for JPL seminars and classes, and for classes
taught by the author and others as a graduate course to
professional programmers through West Coast University.
Feedback from these exposures and from members of the
JPL Committee on Modern Programming (COMP), the
DSN Software Management Seminar, and the DSN
Programming System Steering Committee continually
influenced the textbook material.

By the first part of December 1972, the first two levels
of the design had been delivered and reviewed. This
constituted what at the time was considered to be an
“architectural overview,” dealing with the technical
aspects of the program procedure only. Several objections
were raised with the material presented, principally with
respect to the readability, detail level, and format of the
design documentation.

By this time, too, a QA audit of the prototype (U1108)
processor had revealed that its documentation was faulty,
so the designers, over the next 3 months, were diverted
from the MID until the U1108 documentation was brought
up to date.

Once the U1108 documentation was up to date, there
was then an intense trial and error, instruct and observe,
modify and review activity over the next 6 months to
develop the principal design and documentation practices
which would remain in effect for the remainder of the
MID project. From October 1973 through January 1974,

97

all flowcharts and narrative explanations of the processor
down through level 3 (50 flowcharts) were prepared,
reviewed, reprepared, and finally reviewed in mid-
February by a formal review board.

The board concurred that design criteria (see Section
III) were being fulfilled, whereupon the major design work
began. Design milestones during the next 2 years are
shown in Fig. 1. Figure 2 is a graphic display of the team
cumulative productivity over the same period. Four of the
significant milestones, to be discussed later, also are shown
on the figure: a changeover of personnel, from high-level
program architects to less experienced programmers, in
November of 1974; the commencement of concurrent
coding of the design by JPL personnel on the Caltech
Decsystem-10 in March 1975; the delivery of all flow-
charts and narratives in November 1975; and the formal
completion of the design activity in March 1976,
whereupon the MBASIC cognizant development engineer
(CDE) was made responsible for the repair of minor errors
detected in coding and testing the design.

I1l. Final Development Guidelines

The development guidelines in effect at the formal
termination of the design phase were, first and foremost,
that the design be hierarchically modular, limited in
control connectivity to sequence, DOWHILE,
WHILEDO, IFTHENELSE, and CASE (Ref. 2) struc-
tures, and readable (and developed principally) from the
top down. Only one nonstructured termination form for a
module was permitted, namely that for processing error
messages and returns back to the MBASIC command
mode.

Design documentation was in the form of flowcharts
and accompanying narrative keyed to each flowchart.
Additionally, tables, formats, data structures, error
messages, and a glossary formed necessary reference
appendices. Such documentation detail was, on a flow-
chart by flowchart basis, to fulfill three criteria:

(1) Adequacy for coding by remote coders without
consultation, without functional ambiguity.

(2) Adequacy to assess correctness and for carrying on
the design with no major redirections necessary.

(3) Adequacy of final document for use as principal
sustaining document. :

In order for the MBASIC CDE to review the design
with respect to these three criteria, it became necessary
for him to code the design on the Caltech Decsystem-10
and perform checkout measures on a flowchart by

98

flowchart basis. These checkout measures consisted of
informal top-down tests of the evolving programming
dummy stubs for as yet uncoded or undesigned features,
and executing the program in a special debug-monitor
mode provided by the Decsystem-10.

Although such checkout tests were designed and
performed informally, the guidelines for testing were
explicit: submit the embryonic processor to input
conditions that cause the traversal of each flowline on
each flowchart newly added to the program, at least once.

All items submitted by NIS were kept under strict
project control. Flowcharts and other items contained
“signature control boxes,” in which were placed initials of
the designer, a concurring peer, and the accepting CDE;
such items were given “accepted” status and so logged.
Only items once accepted could be coded and tested; such
modules having errors detected were changed in the log to
“rework” status and returned to NIS for correction. All
code was a direct translation of the flowcharts, box for
box.

Items supplied by NIS on an information-only basis
(lookahead design items) and items formally submitted but
not yet approved by the CDE, were logged as “awaiting
disposition.” These modules could be coded only for use as
dummy stubs, if needed. Errors detected in the use of such
dummies were fed back to NIS, but no change in status
resulted.

Items having been identified (as, for example, by a
striped module on a flowchart) but not delivered yet in
any form were marked “unseen” and logged.

Figure 2 displays the rate at which modules awaiting
disposition and above were delivered (upper line), and the
rate at which the modules received accepted status (lower
line). In mid-1975, the status monitor of logged modules
was computerized, which accounts for the appearance of
increased detail during the latter part of the project.

IV. Machine-Independent Design Concepts

Because the MID was to be implementable on a range
of host computers, the design had to be documented using
higher-level, machine-independent descriptors of algo-
rithms, data structures, and operating system services and
interfaces. For this reason, flowcharts were chosen as the
medium for expression of procedure, with narrative
written to explain each flowchart, material keyed to each
box on the chart. A set of precisely defined conventions
for operations within flowchart boxes was adopted, and

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

these were inserted into the design documentation as
programming standards.

These conventions were so rigorously defined that, had a
compiler been available to recognize them, the translation
from flowchart to code would have been automatized.

The machine-independent design extended from the
top-level flowchart (called Chart 1) downwards through
the program hierarchy to a set of stubs whose algorithm
was felt to be potentially machine-dependent but whose
interface with the remainder of the design (outside these
stubs) was still machine-independent. These stubs were
said to form the “environmental interface” with the host
system, and were labeled “E-routines.”

Figure 3 shows the separation of the MBASIC processor
into the Fundamental language (that portion being the
subject of Vol. T of Ref. 1) processor, herein called the
MID, together with the machine-independent design of
extensions to the full language (MIDX) and the machine-
independent design of the compiled-code, or batch,
processor (MIDB). The machine-dependent design (MDD),
MDDX, and MDDB portions are machine-dependent
designs needed to interface the machine-independent
algorithms to the host operating system (e.g., for 170).

In many instances, algorithms for processing MBASIC
statements were deemed to be machine-dependent only
because of certain constants which were likely to vary
from host to host. Such algorithms were included into the
MID by defining parameterized values for the constants,
giving these a special notation (mnemonic name prefixed
by “%”) so as to be discernible to implementors.

To implement MBASIC on a host, the flowcharts
comprising the MID can be coded immediately in host
assembly language, manually, or perhaps using a set of
portable macros (Ref. 3). The remainder of the job is to
perform the machine-dependent design of the E-routines,
and then to code and test these. Machine-dependent
variation in performance of each implementation is to be
tolerated only as permitted within the program specifica-
tion (Ref. 1)

V. Testbed Methodology Accomplishments

Among the accomplishments of this testbed activity
may be listed the firm establishment of procedures
forming the central core of current DSN standard
practices, which advocate the use of top-down structured
design methods and sound engineering practices. The
project demonstrated that the design documentation was,

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

in fact, adequate for coding by remote coders; that the
top-down approach can accommodate personnel
changeovers with a minimum project impact; and that, in
fact, junior design-level personnel can replace senior
architect-level personnel without adverse effect once the
major program structure and higher-level design decisions
have been worked out.

As may be noted in Fig. 2, the pure-design rate (before
rework starts coming back from the CDE) is much higher
than a design-plus-correctness-assessment rate is apt to be.
This is evidenced by the “sprint” of modules generated at
the beginning and after new personnel were brought on
board. This demonstrates that design to establish a
program architecture is feasible without the need for
coding when detail correctness is not an issue.

However, as demonstrated by the increased slope of the
acceptance line, concurrent coding is an aid to correctness
assessment early in a project and a necessity (the jagged
falloff) in its latter stages.

The curves in Fig. 2 demonstrate that meaningful
quantitative monitors of programming progress exist,
based on public programming practices. The public
programming practices here consisted of regular submit-
tals of flowcharts, narratives, tables, etc. (completed and
lookahead), and the logging of such items by completion
category. The missing item needed to make early
predictions of costs and schedules was only the top
asymptote, not known in the present case until almost
mid-project (July 1975).

Recommendations to improve progress monitors appear
in Section IX.

VI. Testbed Project Statistics

The MID specification consists of about 950 flowcharts
(plus narrative) and E-routine interface descriptions, plus
tables, the glossary, etc. By considering all documentation
items uniformly distributed over the 950 module delivera-
bles, one may compute that, over approximately 1250
man-days, approximately 3/4 of a module was designed
and documented per man-day from the go-ahead review in
February 1974 until project completion in March 1976.
The low productivity rate is principally a reflection of the
difficulty of doing an extremely intricate processing task in
a machine-independent way, as opposed to doing the same
task in a machine-dependent way.

In corroboration of this, the Decsystem-10 figures are
L7 modules per man-day for a 525 man-day total,

99

including design, coding, debugging, and testing. The MID
coding took only 100 man-days to code but another 175
man-days coding and testing to get the MID error-free. Of
significant note is that only 18% of the time was spent in
coding and debugging, and 82% in design.

The total expenditure for the development and first
implementation (MID + MDD) was about 2050 man-days,
or about 8.2 man-years. This represents about 13 lines of
code per man-day.

However, the total next-time effort may be expected to
be only 625 man-days, or about 2.5 man-years (525 + 100
man-days). The implementation on the next host is
therefore only about 30% of the initial development effort,
or about 45 lines of code per man-day.

VIl. Methodology Discoveries

At the beginning of the project, a strict top-down
discipline was a stated requirement, imposed on the
design team to verify claims in the literature (Ref. 4) that
strict top-down methods were profitable. It was soon
discovered that, while the submission of formal design
items, documentation, and delivery of codable flowcharts
from the top-down was of great merit, strict adherence to
the top-down development discipline was having an
adverse effect both on achieving a good design and on
securing a high initial correctness.

On modifying the development guidelines, it was
learned that a lookahead design effort to supplement the
top-down method and to establish the program architec-
ture was of great benefit as a precursor to the formal top-
down detailed design, documentation, and subsequent
coding. Such lookahead, it was found, did not need to be
absolutely correct in detail, so long as the designers’
intentions were recorded, work tasks identified, and the
overall program size estimated. Coding to assess correct-
ness by the designers was not needed, and, in fact, would
probably have been a hindrance if done. Some coding
might have been useful to make certain performance
tradeoffs, however.

Once the formal top-down development began, how-
ever, coding was found to be needed, not only to prove
program correctness but also to reinforce the designers
psychologically.

Coding and checking design items soon after submission
and project acceptance was found to avert the “correct-
ness paranoia” syndrome which tends to set in when the
design gets too large for mental retention of intricate
details. Rather, when designers know what they have

100

produced thus far is correct, they stop worrying about it
and go on to more productive things.

The design effort got off to a slow slow start, it seemed,
for several reasons, principal of which was a general lack
of familiarity with the top-down, modular, hierarchic,
structured programming methodology. Indeed, at that
time, much of the methodology had not been developed
yet, and was in the process of being developed as a result
of this design work. However, it was found, as new
personnel were brought in, that they, too, required a
period of training in the methodology before they could
do an effective job.

Another aspect of the design task, which not only
decreased initial productivity, but which was generally
believed to be unachievable to begin with, was the
requirement for a machine-independent design. Structur-
ing a program for machine-independence in all but a set
of environmental stubs was clearly not a production task,
but one which required applied research. The philoso-
phies and methods developed in this area will be the
subject of a future article.

However, in retrospect, it now appears that at least half
of the algorithms in an entire implementation can fall into
this machine-independent design category. Moreover,
these algorithms form the entire upper-level structure of
the MBASIC processor. The machine-dependent items are
relegated to environmental interfacing stubs whose
implementations do not require personnel with language-
processor-design skills.

Because the architectural overview and overall process-
ing philosophy of the program were, unfortunately, not
made an early part of the formal design supplied to the
Decsystem-10 and MODCOMP-II implementation teams
(JPL and contractor personnel), we found that there was a
great need for this type of information early in the coding
and testing phases.

The first correctness test procedures were very formal
and very detailed. It was soon discovered that such
procedures are difficult to write, lengthy, and require
great expenditures of time, and at no discernible increase
in level of correctness over less formal procedures, given
standard guidelines. The standard guideline was to execute
the program modules under test using the entire program
(or major segment) as a driver, with dummy stubs for
modules not yet coded and with path monitors adequate
to trace the control flow; to select input data to cause the
program to traverse each flowline in each module under
test at least once, plus extreme-value data, out-of-bounds

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

data, and randomly chosen valid data; to run the program
with its stubs using the selected input; and to exercise
human judgment whether or not the trace information
indicated that the intended functions were being accom-
plished.

Selection of detailed procedures and test data, as well as
the criteria for judgment of correctness, were left to the
discretion of the individual implementors. Testing using
the standard guideline proved to be very efficient, quick
(with respect to more formal methods), and thorough.

The method used to log flowcharts, described earlier,
proved very useful in gauging the current status of
delivered items. Because an entire lookahead was not done
prior to the commencement of the formal detailed design,
however, the ultimate number of modules was unknown
until quite late. Thus, incremental progress could be seen
on a regular basis, but estimated percentage of completion
was unavailable. Had a complete architectural (lookahead)
design been done and from this, a work breakdown
structure generated, we can now see in retrospect that it
would have been possible to monitor percentage comple-
tion figures right from the beginning of the formal phase,
and to report progress as milestones defined in the work
breakdown structure.

VIll. Documentation Discoveries

The principal documentation of the MID processor was
in the form of flowcharts and narratives. Flowcharts were
hand-drawn using templates with ANSII-standard symbols,
labeled by typewriter. All flowcharts conformed to rigid
structured programming and detail requirements. There
was a separate page or two of narrative for each chart,
supplied to explain each step in the charted procedures,
its significance, and its rationale. Such documentation was
initiated in rough draft form by the NIS designers, then
typed and drafted by clerical personnel before submission
to JPL.

It was found that this documentation format was
excellent with respect to communications between
designers and coders. We had achieved the goal that
fiowcharts were codable by remote personnel without
consultation. The quality of the documentation was
generally excellent, although there was a relatively high
volume of paper for the amount of information it
contained.

However, the documentation medium proved to be
cumbersome in the sense that the design process tended to
get in series with the limited clerical personnel available

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

and assigned to the task. For this reason, turn-around time
for effecting changes was slow. In the end, we wound up
working much of the time from red-lined charts returned
to NIS in “rework” status, having discovered errors by
coding and testing and repaired these ourselves in red-line
form.

The level of documentation, with respect to detail,
seemed to follow the inequality

DESIGNER < SUSTAINING < CO-LOCATED CODER
< REMOTE CODER

The level required [so-called Class A (Ref. 4), adequate for
remote coders] was therefore deemed adequate for later
sustaining of the design. However, the differential
between the level of detail required by the designer and
that needed by others was very great. Designers could get
by very well with little detail, and getting them to supply
this detail, at times, was somewhat of a problem. Writing
down all the details was not a creative job but something,
we learned, that could be provided by relatively junior
design-level personnel.

Generally, then, the higher-level architects developed
the major algorithms in flowcharted sketches, which the
more junior designers then supplied with details and
narratives. In so doing, the junior-level designers learned
enough of the design and methodology that, midway in the
project, they were able to replace their more expensive
colleagues altogether. The senior people were free for
more creative and less drudging tasks.

The fact that there is a rather routine, drudging part of
the documentation task, which tends to avert creative
people from doing it, is an indication that much can be
done to improve the design medium to bring it into closer
alignment with what is needed by coders.

For one thing, it was found that once an overview of the
processing, data structuring, and architecture of the
program was gained by coders, they tended not to need
the detailed narratives supplied. Rather, they coded
directly from the charts, which were explicit enough for
that task without narrative recourse. Hence, probably a lot
of work went into creation of narratives which could have
been avoided had a suitable overview been insisted upon
and provided in the beginning. The overview, incidentally,
was the last-produced piece of documentation.

The overview was requested (but not insisted upon)
early but was felt at the time not to be a high-priority
item. Developing it, too, must have been viewed a
drudging job by the architects, who then would have had
to write it themselves if it were to be among the first-

101

produced deliverables. Some recommendations for future
projects are contained in the next section.

The final documentation discovery discussed here is felt
to be of major significance: comment-free code. Alarming
as it sounds, coding the MID (and MDD as well) had, by
project standards, almost no narration in the assembly
code listings. The comment fields of the assembly listing
were limited to cross-reference annotations of the
flowchart number, title, and box number. This cross-
referencing made it very easy to correspond lines of code
with actions in the design for coding, debugging, and later
QA audits. Only when special coding was used, or when it
was otherwise not clear how a certain function on a
flowchart was achieved by the code, were narrative
comments permitted. Since the level of detail required
produced explicit coding implications, virtually no such
narratives were needed.

The practice permitted fast, routine coding; coders did
not have to make up comments, except in rare instances,
and made no design decisions (in coding the MID at least).
But more importantly, it virtually forced the design
medium (flowcharts + narrative) to also become the
debugging medium. Any corrections to be made were first
identified, then entered on the flowchart (red-lined), and
then inserted into the code, rather than vice-versa.
Because of this, the documentation was always kept up to
date as a natural consequence of the program develop-
ment, not as an after-the-fact, error-prone process. A great
deal of expense had gone into producing quality documen-
tation, and comment-free code proved a way of not
subverting that quality by creating a processor maintain-
able at the code level alone.

IX. Recommendations

In future testbed activities (specifically, the MBASIC
extension to full language capability), we intend to, and
recommend that other projects also, perform an entire
lookahead design (no coding and detailed correctness not
at issue) down to a sufficient level to establish the
architecture and the number of modules and schedule to
an accuracy goal of 10%. The architecture documentation
will consist predominantly of hand-drawn flowcharts and
other graphics, including sketches of major data structures
(narratives also permitted but not required). The idea is to
permit the architect to carry the design through all the
way to that point needed to size the job, to gauge the
number of flowcharts in the final design to 10%. We
currently estimate that about 20-25% of the total
development time will be spent in this activity.

102

Additionally, the designer will then be asked to produce
a work breakdown structure defining interim milestones,
tasks, personnel assignments, and determination of critical-
path items.

During this architectural phase, the evolving flowchart
module tree will be recorded, as well as estimated
completion percentages of other architectural tasks, at
regular (biweekly) intervals.

Once the architecture is complete, and a Software
Definition Document written and reviewed per DSN
Standard Practice, the formal development of detailed,
high-initial-correctness flowcharts, narratives, and other
items will begin.

The concurrent coding effort will begin early in the
post-architecture phase so as to reduce design-error risk,
but not so early as to constrain the design prerogatives.

Comment fields in the code listings will continue to
contain documentation references only, except in special
circumstances. Coding will continue to be a direct
translation of the flowcharts, in 1 to 1 correspondence, box
for box.

Testing for correctness (as opposed to acceptance
testing) will continue to be performed on an informal basis
but in conformance with the formal guideline given
earlier.

Because the MIDX design is to extend the MID, the
same documentation guidelines will be in effect (for
uniformity). However, overview material will be insisted
upon early.

X. Problems not Solved by the Testbed
Methodology

Perhaps the most noticeable failure of the testbed was
in the area of minimizing problems due to non-colocation
between design and coding teams, principal of which was
the inability to maintain the desired visibility into the
partial-progress status of the design team. Regular
progress reporting was unenforceable; submitted reports,
when they came, generally provided no quantifiable status
information. Because status monitors were faulty, we were
unable to predict schedules. It is hoped that better status
monitors will be forthcoming in the MIDX follow-on
because of the explicit architectural phase and work
breakdown structures to be generated.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

As mentioned earlier, the documentation medium (more
than the documentation format) proved inflexible and
expensive, and required a comparatively long turn-around
time to correct even minor bugs, cosmetics, or oversights.

The clerical burden of supplying drudging narrative
detail to support flowcharts tended to “burn out” design
team members, especially those with the more senior
capability. Because of the fear of having to renarrate
(added drudgery) items found by later coding to be in
error, and by emphasis placed on original correctness in
the design, there seemed to be a correctness paranoia.
This led to hiding of design items, or reluctance to deliver
flowcharts and narratives on a piecemeal basis. This
countered the “public programming” goal and decreased
visibility into how much of the design we actually had at
any particular point in time. We hope that the separate
architectural phase (during which correctness in minor
details is not at issue), the use of concurrent coding to
check design details early, and the improved status
monitors will avert future difficulties of this type.

Xl. Future Needs Indicated by Testbed
Project

Probably the single thing most needed to raise
productivity at this point is a more flexible, easier-to-
maintain, less expensive but equally descriptive and
graphic form of program documentation. The documenta-
tion produced by designers needs to be sufficient for
remote coders as a natural outcome of the documentation
method; that is, the documentation method needs to
narrow the gap between what the designer wants to
produce and what the remote coder actually needs. (We
refuse to accept designers doing the coding themselves as
a method of achieving this, as it tends to produce software
not maintainable by individuals other than the originators.)

The second major need is that for better project
visibility producing methods during the design and
implementation. Suitable methods for cost and schedule
prediction will probably result when this need is fulfilled.

Perhaps the best way to increase the level of public

programming (and thereby, project visibility) is to merge
the design and documentation media via automation. If

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

design media are computer-based, processing a design into
readable and needed documentation can potentially be
done automatically—fulfilling the first need above—and at
the same time, can provide a viable status probing
capability—fulfilling the second need also.

To avert human fallibility in the informal correctness
testing and to speed up the path-identification and
corresponding input data generation, there is a need for
computer aid. The generation of tests and test data
conforming to the earlier guideline is almost a clerical task
in itself, tantamount to tabulation of various paths in the
design and determination of data (and stub designs) to
drive the coded program through those paths. Although
buman judgment may be needed at points in this
procedure, certainly the computer is capable of scanning
the design, analyzing and tabulating paths and conditions
to be met for the human then to consider.

Other aids can readily be wished for. The creation of
such development supporting software must always be
guided by expectation or demonstration of feasibility, cost,
and potential gain.

XIl. Summary

The methodology developed as a result of this testbed
has become the foundation of the current DSN software
development guidelines and standard practices. The
quality of the testbed design and of the documentation
produced by it is unmistakable. There is room for yet
more improvement, however, chiefly in the areas of
increased productivity and project manageability. Both of
these enhancements can be achieved by putting the
computer to work to solve the very problems people have
in creating programs for the computer.

At the beginning of this project, the development of
quality software was truly an art masterable by only a few
of its practitioners. The application of the methodology
used and derived by this testbed demonstrates that
production programming may be a passing art form. Such
a passage is not lamentable, however, for it will be
replaced by an effective engineering discipline. Whereas
artforms are generally mastered by a few but appreciated
by many, the engineering discipline will be both practiced
and appreciated by an entire community of adherents.

103

References

L. MBASIC, Vol. I-Fundamentals, Vol. II—Appendices, Jet Propulsion Laboratory,
Pasadena, California, 1973 (JPL internal document).

2. Tausworthe, Robert C., Standardized Development of Computer Software,
Vol. I-Methods, Vol. II-Standards, Jet Propulsion Laboratory, June 1976 (JPL
internal document).

3. Riggins, M. C., “Portability of the MBASIC Machine Independent Design,”
DSN Prog. Report 42-24, Jet Propulsion Laboratory, Dec. 15, 1974, pp. 100-
106.

4. Tausworthe, Robert C., Standard Classifications of Software Documentation,
Technical Memorandum 33-756, Jet Propulsion Laboratory, Pasadena,
California, Jan. 15, 1976.

104 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

MILESTONES 1971

1972

1973 1974 1975

2Ansnn

STe M AT TATs [N [F M AL D TR S olN e o [M[A L] [Als [0]o

START U~1108 MBASIC v

e

|OPNS TRANSFER U1108 MBASIC

BEGIN MBASIC MID

-

|LEVELS 1 AND 2 (ARCHITECTURE) REVIEW

{* U1108 DOCUMENTATION
|* [ITERATION ON MID DOC DSGN STDS

7 IDOCUMENTATION DSGN STDS ACCEPTED.

* |PREPARATION OF LEVELS 1-3

» [MID HI-LEVEL DESIGN RVW

' |PARSER DELIVERED

1 |PARSER ACCEPTED INTO PC

 [PERSONNEL CHANGEOVER i

' [BEGIN PDP-10 CODING |
*|98% OF ALL FLOWCHARTS DELIVERED

'*1100% OF ALL FLOWCHARTS DELIVERED

| * [CORRECTINESS ITERATIONS

Fig. 1.

MBASIC development history

oo — — e e e e

T

50—

% COMPLETION

N SR S T Y I |

ALL MODULES
IDENTIFIED

ALL MODULES DESIGN
SEEN

v

COMPLETED
v

|<———— REWORK —————»'

MODULES SEEN \\

PERSONNEL
CHANGE-
OVER

v

STATUS

PDP-10 CODING

BEGINS 1

v

I N T N VU NN I SN S T OO OO VO S N

REWORK —

MODULES IN ACCEPTED h

0
JFMAMIJ JA
1974

| I N |
S ONDIJ

ONDIJ FMAMIJ JASOND
1976

)
J J A S
1975

L.l |
FMAM

Fig. 2. MBASIC-MID module development history

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

105

(MDDX)
EXTENSION TO
—————————— =1 FULL MBASIC LANGUAGE

(MIDX)

I HOST ENVIRONMENTAL MBASIC
COMPUTER INTERFACE (E) FUNDAMENTAL
OPERATING ROUTINES PROCESSOR (MID)
SYSTEM (MDD) (CHART 1)

MBASIC BATCH
PROCESSOR
(MIB)

TAPE

T

Fig. 3. MBASIC machine-independent design configuration

106 JPL DEEP SPACE NETWORK PROGRESS REPORT 42-33

